师资力量
副教授/副高

陈国炜

2018/09/26


学位:博士

职务:

所属学院:市政工程

社会兼职:

E-mail:gwchen@hfut.edu.cn

个人简介


陈国炜,女,理学博士,合肥工业大学土木与水利工程学院副教授。

从事水环境污染控制、抗生素环境微生物转化方向研究,主持多项国家级、省部级研究项目,承担多项企业委托课题,发表学术论文40余篇。


教育经历 

2003.09-2006.12:博士研究生,中国科学技术大学,分析化学 

1998.09-2001.04:硕士研究生,合肥工业大学,水文学及水资源 

1994.09-1998.07:本科,合肥工业大学,给水排水工程 


工作经历 

2012.01-:副教授,合肥工业大学,土木与水利工程学院 

2007.03-2009.03:博士后、研究教授,Pusan National University,Department of Environmental Engineering  

2004.01-2006.12:讲师,合肥工业大学,土木与水利工程学院 

2001.05-2003.12:助教,合肥工业大学,土木工程系


社会兼职

国际水协IWA会员,安徽省水利学会会员


主讲课程

本科生课程《水质工程学》《专业英语》;

研究生课程《废水处理理论》


研究方向

城镇给水排水技术研究及应用

水污染控制理论与技术研究

污染物能源化和资源化利用


主持科研项目

[1] 国家自然科学基金项目(主持):51108148,有机砷对废水生物处理过程和脱氮除磷行为的干预,2012.01-2014.12

[2] 水文水资源与水利工程科学国家重点实验室开放研究基金重点项目(主持):2017490111,不同降水条件下小流域土壤养分运移机制,2018.01-2019.12

[3] 水利部水利信息中心委托项目(主持):台风风暴潮与堤岸防御能力调研分析,2015.05-2016.05

[4] 国家自然科学基金项目(主研):51479046,微观水力条件下给水管网微生物聚集行为解析及数值模拟,2015.01-2018.12

[5] 韩国科学与工程基金(主研):R01-2008-000-11853-0,基于纳米微生物产电系统的高效污水处理工艺,2008.01-2010.12


参加科研项目

获得奖励情况


发表科研论文

[1] M. Du, L. W, A. Ebrahimi, G. Chen, S. Shu, K. Zhu, C. Shen, B. Li G. Wang*, Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media, Ecotoxicol. Environ. Saf. (Accepted)

[2] Y. Sun, M. Sun, G. Chen, X. Chen, B. Li, G. Wang*, Aggregate sizes regulate the microbial community patterns in sandy soil profile, Soil Ecol. Lett. (Accepted)

[3] G. Wang, N. Han, L. Liu, Z. Ke, B. Li, G. Chen*, Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation, Environ. Pollut. 262 (2020) 114370. doi:10.1016/j.envpol.2020.114370.

[4] R. Zhao, G. Chen*, L. Liu, W. Zhang, Y. Sun, B. Li, G. Wang, Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment, Environ. Pollut. 259 (2020) 113924. doi:10.1016/j.envpol.2020.113924.

[5] G. Chen, N. Zhu, Z. Hu, L. Liu, G-Q. Wang, G. Wang*, Motility changes rather than EPS production shape aggregation of Chlamydomonas microsphaera in aquatic environment, Environ. Technol. 0 (2020) 1–24. doi:10.1080/09593330.2020.1718216.

[6] Y. Liu, R. Shan, G. Chen, L. Liu, Linking flow velocity-regulated EPS production with early-stage biofilm formation in drinking water distribution systems, Water Supply. (2020) 1–13. doi:10.2166/wst.2015.440.

[7] B. Du, Y. Gu, G. Chen, G. Wang, L. Liu*, Flagellar motility mediates early-stage bio fi lm formation in oligotrophic aquatic environment, Ecotoxicol. Environ. Saf. 194 (2020) 110340. doi:10.1016/j.ecoenv.2020.110340.

[8] Y. Wang, G. Chen, Y. Sun, K. Zhu, Y. Jin, B. Li, G. Wang, Different agricultural practices specify bacterial community compositions in the soil rhizosphere and root zone, Soil Ecol. Lett. (2020). https://doi.org/10.1007/s42832-020-0058-y.

[9] G. Chen, R. Xu, L. Liu, H. Shi, G. Wang, G. Wang*, Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells, Appl. Microbiol. Biotechnol. 102 (2018) 8093–8106.

[10] G. Wang, Y. Wang, L. Liu, Y. Jin, N. Zhu, X. Li, G-Q. Wang, G. Chen*, Comprehensive assessment of microbial aggregation characteristics of activated sludge bioreactors using fuzzy clustering analysis, Ecotoxicol. Environ. Saf. 162 (2018) 296–303. doi:10.1016/j.ecoenv.2018.06.096.

[11] G. Chen, H. Liu, W. Zhang, B. Li, L. Liu, G. Wang*, Roxarsone exposure jeopardizes nitrogen removal and regulates bacterial community in biological sequential batch reactors, Ecotoxicol. Environ. Saf. 159 (2018) 232–239. doi:10.1016/j.ecoenv.2018.05.012.

[12] L. Liu, Q. Hu, Y. Le, G. Chen, Z. Tong, Q. Xu, G. Wang*, Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems, Process Biochem. 55 (2017) 41–48. doi:10.1016/j.procbio.2016.12.029.

[13] L. Liu, Y. Liu, Q. Lu, G. Chen, G. Wang*, Assessing comprehensive performance of biofilm formation and water quality in drinking water distribution systems, Water Sci. Technol. Water Supply. 17 (2017) 267–278. doi:10.2166/ws.2016.134.

[14] G. Chen, Z. Ke, T. Liang, L. Liu*, G. Wang*, Shewanella oneidensis MR-1-induced Fe(III) reduction facilitates roxarsone transformation, PLoS One. 11 (2016) e0154017. doi:10.1371/journal.pone.0154017.

[15] L. Liu*, X. Li, G. Xia, J. Jin, G. Chen, Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems, Nat. Hazards. 83 (2016) 1469–1483. doi:10.1007/s11069-016-2371-4.

[16] N. Zhu, L. Liu, Q. Xu, G. Chen*, G. Wang*, Resources availability mediated EPS production regulate microbial cluster formation in activated sludge system, Chem. Eng. J. 279 (2015) 129–135. doi:10.1016/j.cej.2015.05.017.

[17] L. Liu, Y. Le, J. Jin, Y. Zhou, G. Chen*, Chlorine stress mediates microbial surface attachment in drinking water systems, Appl. Microbiol. Biotechnol. 99 (2015) 2861–2869. doi:10.1007/s00253-014-6166-9.

[18] H. Liu, G. Wang, J. Ge, L. Liu, G. Chen*, Fate of roxarsone during biological nitrogen removal process in wastewater treatment systems, Chem. Eng. J. 255 (2014) 500–505. doi:10.1016/j.cej.2014.06.030.

[19] T. Liang, Z. Ke, Q. Chen, L. Liu, G. Chen*, Degradation of roxarsone in a silt loam soil and its toxicity assessment, Chemosphere. 112 (2014) 128–133. doi:10.1016/j.chemosphere.2014.03.103.

[20] G. Chen, N. Zhu, Z. Tang, P. Ye, Z. Hu, L. Liu*, Resource availability shapes microbial motility and mediates early-stage formation of microbial clusters in biological wastewater treatment processes, Appl. Microbiol. Biotechnol. 98 (2014) 1459–1467. doi:10.1007/s00253-013-5109-1.

[21] J. Hu, Z. Tong, G. Chen, X. Zhan, Z. Hu*, Adsorption of roxarsone by iron (hydr)oxide-modified multiwalled carbon nanotubes from aqueous solution and its mechanisms, Int. J. Environ. Sci. Technol. 11 (2014) 785–794. doi:10.1007/s13762-013-0261-9.

[22] Q. Guo, L. Liu, Z. Hu, G. Chen*, Biological phosphorus removal inhibition by roxarsone in batch culture systems, Chemosphere. 92 (2013) 138–142. doi:10.1016/j.chemosphere.2013.02.029.

[23] J. Hu, Z. Tong, Z. Hu*, G. Chen*, T. Chen, Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes, J. Colloid Interface Sci. 377 (2012) 355–361. doi:10.1016/j.jcis.2012.03.064.

[24] Z. Hu*, Y. Liu, G. Chen, X. Gui, T. Chen, X. Zhan, Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines, Bioresour. Technol. 102 (2011) 7329–7334. doi:10.1016/j.biortech.2011.05.003.

[25] G. Chen, S. Choi, J. Cha, T. Lee, C. Kim*, Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells, Korean J. Chem. Eng. 27 (2010) 1513–1520. doi:10.1007/s11814-010-0231-6.

[26] G. Chen, J. Cha, S. Choi, T. Lee, C. Kim*, Characterization of an open biocathode microbial fuel cell for electricity generation and effluent polish, Korean J. Chem. Eng. 27 (2010) 828–835. doi:10.1007/s11814-010-0142-6.

[27] J. Cha, C. Kim*, S. Choi, G. Lee, G. Chen, T. Lee, Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater, Water Sci. Technol. 60 (2009) 1409–1418. doi:10.2166/wst.2009.489.

[28] G. Chen, S. Choi, T. Lee, G. Lee, J. Cha, C. Kim*, Application of biocathode in microbial fuel cells: cell performance and microbial community, Appl. Microbiol. Biotechnol. 79 (2008) 379–388. doi:10.1007/s00253-008-1451-0.

[29] G. Chen, H. Yu*, P. Xi, D. Xu, Modeling the yield of activated sludge in the presence of 2,4-dinitrophenol, Biochem. Eng. J. (2008). doi:10.1016/j.bej.2007.12.008.

[30] G. Chen, H. Yu*, P. Xi, Influence of 2,4-dinitrophenol on the characteristics of activated sludge in batch reactors, Bioresour. Technol. 98 (2007) 729–733. doi:10.1016/j.biortech.2006.04.001.

[31] G. Chen, P. Xi, D. Xu, H. Yu*, Comparison between inhibitor and uncoupler for minimizing excess sludge production of an activated sludge process, Front. Environ. Sci. Eng. China. 1 (2007) 63–66. doi:10.1007/s11783-007-0012-6.

[32] G. Chen, H. Yu*, H. Liu, D. Xu, Response of activated sludge to the presence of 2,4-dichlorophenol in a batch culture system, Process Biochem. 41 (2006) 1758–1763. doi:10.1016/j.procbio.2006.03.022.

[33] 韩苗, 朱晓艳, 陈国炜, 万小铭, 王钢*. 解钾菌及其释钾微观机制的研究进展[J]. 土壤学报, 2021. DOI: 10.11766/trxb202011270525.

[34] 辛梓, 陈国炜, 施华升. 希瓦氏菌对铁矿石吸附洛克沙胂的生物转换影响[J]. 合肥工业大学学报(自然科学版),2019,42(8):1119-1124.

[35] 肖雅玲, 童川, 施华升, 陈国炜. 水砂质量比对洛克沙胂转换及微生物群的影响[J]. 合肥工业大学学报(自然科学版),2019,42(8):1125-1130.

[36] 施华升, 沈仁豪, 胡振, 陈国炜. 外源活性污泥胞外聚合物对小球衣藻聚集行为的影响[J]. 应用与环境生物学报, 2019, 25(03):570-577. [doi:10.19675/j.cnki.1006-687x.201807027]

[37] 朱晓艳, 沈重阳, 陈国炜, 张伟, 李保国, 王钢. 土壤细菌趋化性研究进展[J]. 土壤学报, 2019, 56(2):259-275.

[38] 赵冉冉, 陈国炜. 模拟胞外聚合物对单细胞藻类聚集行为的影响[J]. 合肥工业大学学报(自然科学版), 2018, 41(11):1531-1536.

[39] 余健, 杜邦, 施华升, 陈国炜, 刘丽. 给水管网中余氯浓度对颗粒物表面细菌附着的影响[J]. 环境科学学报,2018,38(5):1804-1811.

[40] 黄保国, 顾越, 陈国炜, 金菊良, 刘丽.给水管网流速对水质和生物膜种群结构的影响[J]. 应用与环境生物学报,2018,24(4):860-865.

[41] 夏高原, 葛军, 柯正辰, 金菊良, 陈国炜, 刘丽. 城市内河综合水质对再生水补水的响应[J]. 环境工程学报, 2017, 11(1):136-142.

 

会议论文

[1] L. Liu, G. Wang, G. Chen, Disinfection stress mediated cell motility shapes bacterial surface attachment on drinking water supply pipelines. IWA Specialized Conference: Biofilms in drinking water systems, From treatment to tap. Arosa, Switzerland, 23-26, Aug, 2015.

[2] J. Cha, S. Choi, H.Yu, G. Chen, T. Lee, C. Kim, Directly applicable microbial fuel cells into aeration tank for wastewater treatment. Workshop on electrochemically active biofilms. Paris, France. 19-21, Nov. 2008

[3] J. Cha, G. Lee, G. Chen, T. Lee, C. Kim,  Denitrification at the bio-cathode in the two chambered MFC. The First International Microbial Fuel Cell Symposium. University Park, USA, 27-29, May, 2008.

[4] J. Cha, G. Lee, G. Chen, J. Kim, T. Lee, C. Kim. Organics and nitrogen compounds removal and electricity production from wastewater using a microbial fuel cell system. The 11th World Congress on Anaerobic Digestion. Brisbane, Australia. 23-27, Sept. 2007.


联系方式 学院地址:合肥市屯溪路193号 联系电话:0551-62902066 院长信箱:civil@hfut.edu.cn

合肥工业大学土木与水利工程学院@版权所有